Tag Archives: grade 5 question

Problem Solving Made Difficult

Picture

The US edition of a grade 5 Singapore math supplementary title.

Recently, while revising a grade 5 supplementary book I wrote for Marshall Cavendish, I saw that other than the answer, there was no solution or hint provided to the following question.

If Ann gave $2 to Beth, Beth would have twice as much as Ann.
If Beth gave $2 to Ann, they would have the same amount of money.
How much did each person have?

Most grade 7 Singapore math textbooks and assessment books would normally carry a few of these typical word problems, whereby students are expected to use an algebraic method to solve them. For instance, using algebra, students would form two linear equations in x and y, before solving them by the elimination, or substitution, method. A pretty standard application of solving a pair of simultaneous linear equations, by an analytic method.

However, it’s not uncommon to see these types of word problems appearing in lower-grade supplementary titles, whereby students could solve them, using the Singapore model, or bar, method; and the Sakamoto method. In other words, these grade 7 and 8 questions could be solved by grade 5 and 6 students, using a non-algebraic method.

Algebra versus Model Drawing

Conceptually speaking, I think a grade 6 or 7 student who can solve the above word problem, using a model drawing, appears to exhibit a higher level of mathematical maturity than one who simply uses two variables to represent the unknowns, before forming two simultaneous linear equations to solve them. Of course, because the numbers in this question are relatively small, it’s not surprising to catch a number of average students relying on the trial-and-error method to find the answer.

Try to solve the question, using both algebra and a model; then compare the two methods of solution. Which one do you think demands a deeper or higher level of reasoning or thinking skills?

Depicted below is a model drawing of the above grade 5 word problem.

Picture

From the model drawing,

1 unit = 2 + 2 + 2 + 2 = 8
1 unit + 2 = 10
1 unit + 6 = 14

Ann had $10.
Beth had $14.

Generalizing the Problem

A minor change in the question, by altering the “number of times” Beth would have as much money as Ann, reveals an interesting pattern: the model drawing remains unchanged, except for the varying number of units that represent the same quantity.Here are two modified versions of the original grade 5 question.

If Ann gave $2 to Beth, Beth would have three times as much as Ann.

If Beth gave $2 to Ann, they would have the same amount of money.
How much did each person have?

Answer: Ann–$6; Beth–$10.

If Ann gave $2 to Beth, Beth would have five times as much as Ann.
If Beth gave $2 to Ann, they would have the same amount of money.
How much did each person have?

Answer: Ann–$4; Beth–$8.

From Problem Solving to Problem Posing

The two modified questions could serve as good practice for students to become skilled in model drawing, and to help them deduce numerical relationships confidently from them. Besides, they provide a good opportunity to challenge students to pose similar questions, by altering the “number of times” Beth would have as much money as Ann. Which numerical values would work, and what ones wouldn’t, in order for the model drawing to make sense, or for the question to remain solvable?

Conclusion

Let me end, by tickling you with another grade 5 question, similar to the previous three word problems.

If Ann gave $2 to Beth, Beth would have three times as much as Ann.
If Beth gave $2 to Ann, they would have twice as much money as Beth.
How much did each person have?

Answer: Ann–$4.40; Beth–$5.20.

How do you still use the model method to solve this slightly modified ratio question? Test it on your better students or colleagues! It’s slightly harder, because any obvious result isn’t easily deduced from the model drawing, as compared to the ones posed earlier on. Besides, unlike the three previous word problems whose answers are integers, this last problem has a decimal answer—it just doesn’t lend itself well to the guess-and-check strategy.

Share with us how your students or colleagues fare on this last question. Remember: No algebra allowed!

© Yan Kow Cheong, July 12, 2013.

The Dolls Problem à la Singapour

Following a request from a Linkedln friend to provide a solution that makes use of the Singapore model method to the question below—I couldn’t trace the origin of this word problem—here’s a quick-and-dirty sketch of a five-model-drawing solution.

Jazmine buys and sells antique dolls on the Internet. Yesterday, she focused on dolls from the Civil War period. She began the day by selling one-fourth of her dolls from that period. Then she sold six more. Just before lunch she sold one-fourth of the remaining Civil War dolls. After lunch, she bought some Civil War dolls, increasing her collection by one-sixth. Then she bought some more, doubling her collection. Just before she quit for the day, she sold two thirds of her Civil War dolls. After all that, she had fourteen of these dolls left. How many dolls did Jazmine have before she began trading yesterday?

It wouldn’t be surprising that this kind of brain-unfriendly word problem, set in a test or exam, might give some un-mathophobic grade five or six students sweaty palms, or goose pimples, if they started feeling clueless after attempting to solve it for some five odd minutes!

Picture

A quick-and-dirty solution that makes use of the model method.

Using the “work backwards” strategy repeatedly, the model drawings show that Jazmine had 40 dolls before she began trading yesterday.

If you’re an “algebraic freak,” by all means, use algebra to check your answer—I decided to give the algebraic approach a miss this time round.

Disproportionate parts or units

Notice that I’ve loosely used “units” and “parts” alternately to represent each model drawing. And I’ve also used each unit, or part, in a rather disproportionate manner, as compared to textbooks’ modeled solutions, which generally depict the bars (or rectangles) proportionately, based on their respective numerical values—which is secondary to the reasoning or thinking processes.

The above dolls problem is similar to a question I discussed in an earlier post, except that the present one is slightly harder; otherwise, it adopts the same problem-solving strategies for  its solution.

Sakamoto and Stack Methods

My next task is to check whether the Stack method or the Sakamoto method to the above word problem is conceptually “friendlier” than the model method. Are there intuitive or elegant solutions other than the one that embraces the bar method? Meanwhile, please send us your solution(s) to the dolls problem.

© Yan Kow Cheong, March 27, 2013.

Postscript: Although math was my favorite subject in school, I don’t recall solving questions similar to the above word problem. I doubt if I would be able to solve it when I was in grade five or six. It looks like this present younger generation has been given the shorter end of the mathematical stick—worse, if math happens not to be their cup of tea! It’s no surprise that strangers, young and old, angrily tell me of their negative mathematical experiences in school—how they disliked math (and their math teachers).